此网站为郑州seo技术博客网站,欢迎加好友互相探讨!
当前位置:郑州SEO博客 > SEO技巧 > 正文

从零开始,构建数据化运营体系

06-17 SEO技巧

数据化运营是一个近年来兴起的概念,它在运营的基础上,提出了以数据驱动决策的口号。

在了解数据化运营前,运营们有没有过如下的问题:

不同渠道,效果究竟是好是坏?

活跃数下降了,到底是因为什么原因?

这次活动推广成效如何?

发布了版本,用户喜不喜欢?

我们总是说传播,传播到底有多大?

这是产品和运营每天每时每刻都会遇到的问题。数据化运营,实际以解决这些问题为根本。它从来不是BAT的专属,也不是大数据的独宠,每一家互联网公司,都有适合的数据运营土壤。

数据运营体系,是数据分析的集合与应用,也是数据先行的战略,它不仅是运营人员的工作,也是产品、市场和研发的共同愿景。从管理角度,是自上而下的推动,如果领导不重视,那么执行者数据用得再好,也是半只腿走路。

如何构建数据化运营体系呢?以下是我的总结思考。

我将数据化运营体系划分成四层架构,每一层架构都逐步演进互相依赖,每一层又不可缺少。这四层分别是数据收集层,数据产品层,数据运营层,用户触达层。它是以运营人员为视角的框架。

数据收集层

数据化运营体系的底层是数据收集,数据是整个体系中的石油。

数据收集的核心是尽可能收集一切的数据,它有两个原则:宜早不宜晚,宜全不宜少。

宜早不宜晚,意思是产品从创立阶段,就需要有意识的收集数据,而不是等到公司发展到B轮、C轮才去收集。数据化运营贯彻产品全阶段,不同阶段有不同的运营方法。

宜全不宜少,指的是只有不合适的数据,而没有烂数据。像历史数据、变更记录或者细节处的数据,都存在价值。

举一个例子,有一家金融产品,它的征信系统会详细记录用户的行为,用户在借贷时上传担保资料,会记录用户在这些页面的操作步骤和时间。这里有一个假设,上传担保资料普通人一定是谨慎小心的,如果这步骤完成的非常顺畅快速,很可能是会违约和欠款的人群:你操作那么溜,是不是想捞一笔?属于熟练工作案。征信系统会把这些数据作为特征判断风险。

需要收集的数据能划分成四个主要类型:行为数据、流量数据、业务数据、外部数据。

行为数据

它是记录用户在产品上一系列操作行为的集合,按时间顺序记录。用户打开APP,点击菜单,浏览页面是行为;用户收藏歌曲、循环播放歌曲,快进跳过歌曲是行为。

行为数据的核心是描述哪个用户在哪个时间点、哪个地方,以哪种方式完成了哪类操作。

我们可以利用其分析用户的偏好,页面停留时间的长短,浏览的频繁程度,点赞与否,都可以成为依据。另外一方面,用户行为也是用户运营体系的基础,按不同行为,如购买、评论、回复、添加好友等,划分出不同梯度,定义核心用户、重要用户、普通用户、潜在用户的分层。

行为数据通过埋点技术收集。埋点有不同种的实现方式,采集到的数据内容倒是没有差别,主要以用户ID,用户行为,行为时间戳为最主要的字段。用表格画一个简化的模型:

useId用来标示用户唯一身份,通过它来确定具体是谁,理解成身份证号就行。active就是具体操作的行为,需要在技术层面设置和定义,timestamp就是发生行为的时间点,我这里只精确到分,一般会精确到毫秒。用户的行为记录应该详细,比如浏览了什么页面,此时页面有哪些元素(因为元素是动态的,比如价格),它是半结构化的NoSQL形式,我这里简化了。

有时候为了技术方便,行为数据只会采集用户在产品浏览的页面,像点击、滑动这类操作不记录。属于折衷的方法。

除此以外,行为数据还会记录用户设备、IP、地理位置等更详细的信息。不同设备的屏幕宽度不一样,用户交互和设计体验是否会有差异和影响,怎么拿来分析?这也是数据化运营的应用之一,是宜全不宜少的体现。

流量数据

流量数据是行为数据的前辈,是Web1.0就兴起的概念。它一般用于网页端的记录,行为数据在产品端。

版权保护: 本文由 郑州SEO博客 原创,转载请保留链接: http://www.zglblog.cn/seojq/1555.html